A novel Fe(III) dependent bioflocculant from Klebsiella oxytoca GS-4-08: culture conditions optimization and flocculation mechanism
نویسندگان
چکیده
In this work, the effect of cultivation factors on the flocculation efficiency (FE) of bioflocculant P-GS408 from Klebsiella oxytoca was optimized by the response surface methodology. The most significant factor, i.e. culture time, was determined by gray relational analysis. A total of 240 mg of purified P-GS408 was prepared from 1 liter of culture solution under the optimal conditions. GC-MS analysis results indicated that the polysaccharide of P-GS408 mainly contains Rhamnose and Galactose, and the existence of abundant hydroxyl, carboxyl and amino groups was evidenced by FTIR and XPS analyses. With the aid of Fe3+, the FE of kaolin solution by P-GS408 could achieve 99.48% in ten minutes. Functional groups of polysaccharide were involved in the first adsorption step and the zeta potential of kaolin solution changed from -39.0 mV to 43.4 mV in the presence of Fe3+ and P-GS408. Three-dimensional excitation-emission (EEM) fluorescence spectra demonstrates that the trivalent Fe3+ and Al3+ can bind efficiently with P-GS408, while those univalent and divalent cations cannot. With the help of SEM images, FTIR, zeta potential and EEM spectra, we proposed the P-GS408 flocculation mechanism, which consists of coordination bond combination, charge neutrality, adsorption and bridging, and net catching.
منابع مشابه
Iron-binding characterization and polysaccharide production by Klebsiella oxytoca strain isolated from mine acid drainage
AIMS To investigate Klebsiella oxytoca strain BAS-10 growth on ferric citrate under anaerobic conditions for exopolysaccharide (EPS) production and localization on cell followed by the purification and the EPS determination of the iron-binding stability constant to EPS or biotechnological applications. METHODS AND RESULTS Klebsiella oxytoca ferments ferric citrate under anaerobic conditions a...
متن کاملCation Dependence, pH Tolerance, and Dosage Requirement of a Bioflocculant Produced by Bacillus spp. UPMB13: Flocculation Performance Optimization through Kaolin Assays
A bioflocculant-producing bacterial strain with highly mucoid and ropy colony morphological characteristics identified as Bacillus spp. UPMB13 was found to be a potential bioflocculant-producing bacterium. The effect of cation dependency, pH tolerance and dosage requirement on flocculating ability of the strain was determined by flocculation assay with kaolin as the suspended particle. The floc...
متن کاملEffect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation.
A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble ...
متن کاملThe mechanism of kaolin clay flocculation by a cation-independent bioflocculant produced by Chryseobacterium daeguense W6
In recent years, several novel cation-independent bioflocculants have been reported, which can avoid the secondary contamination caused by addition of cations. However, compared with cation-dependent bioflocculants, the flocculating mechanism of cation-independent bioflocculants is largely unknown. In this study, a cation-independent bioflocculant MBF-W6 produced by Chryseobacterium daeguense W...
متن کاملAdaptative biochemical pathways and regulatory networks in Klebsiella oxytoca BAS-10 producing a biotechnologically relevant exopolysaccharide during Fe(III)-citrate fermentation
BACKGROUND A bacterial strain previously isolated from pyrite mine drainage and named BAS-10 was tentatively identified as Klebsiella oxytoca. Unlikely other enterobacteria, BAS-10 is able to grow on Fe(III)-citrate as sole carbon and energy source, yielding acetic acid and CO2 coupled with Fe(III) reduction to Fe(II) and showing unusual physiological characteristics. In fact, under this growth...
متن کامل